A general algorithm for manipulating non-linear and linear entanglement witnesses by using exact convex optimization
نویسندگان
چکیده
A generic algorithm is developed to reduce the problem of obtaining linear and nonlinear entanglement witnesses of a given quantum system, to convex optimization problem. This approach is completely general and can be applied for the entanglement detection of any N-partite quantum system. For this purpose, a map from convex space of separable density matrices to a convex region called feasible region is defined, where by using exact convex optimization method, the linear entanglement witnesses can be obtained from polygonal shape feasible regions, while for curved shape feasible regions, envelope of the family of linear entanglement witnesses can be considered as nonlinear entanglement witnesses. This method proposes a new methodological framework within which most of previous EWs can be studied. To conclude and in order to demonstrate the capability E-mail:[email protected] E-mail:[email protected] E-mail:[email protected]
منابع مشابه
Investigating a Class of 2⊗ 2⊗ d Chessboard Density Matrices via Linear and Non-linear Entanglement Witnesses Constructed by Exact Convex Optimization
Here we consider a class of 2⊗ 2⊗ d chessboard density matrices starting with threequbit ones which have positive partial transposes with respect to all subsystems. To investigate the entanglement of these density matrices, we use the entanglement witness approach. For constructing entanglement witnesses (EWs) detecting these density matrices, we attempt to convert the problem to an exact conve...
متن کاملManipulating Multi-qudit Entanglement Witnesses by Using Linear Programming
A new class of entanglement witnesses (EWs) called reduction type entanglement witnesses is introduced, which can detect some multi-qudit entangeled states including PPT ones with Hilbert space of dimension d1 ⊗ d2 ⊗ ... ⊗ dn . The novelty of this work comes from the fact that the feasible regions turn out to be convex polygons, hence the manipulation of these EWs reduces to linear programming ...
متن کاملSolving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms
Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...
متن کاملLinear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints
In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...
متن کاملMulti-qubit stabilizer and cluster entanglement witnesses
One of the problems concerning entanglement witnesses (EWs) is the construction of them by a given set of operators. Here several multi-qubit EWs called stabilizer EWs are constructed by using the stabilizer operators of some given multi-qubit states such as GHZ, cluster and exceptional states. The general approach to manipulate the multi-qubit stabilizer EWs by exact(approximate) linear progra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009